Answer:
[tex] \qquad \large \bold{ (a) \: \: 30.2 \: m} \\ [/tex]
[tex] \qquad \large \bold{(b) \: \: 71.1 \: m} \\ [/tex]
Step-by-step explanation:
The given scenario can be modeled as two right triangles where the sum of their heights is 92 m (see attachment).
[tex] \\ \underline{ \sf{ \pmb{Define } \: the \: \pmb{variables}}} \\ [/tex]
- Let x = the distance between the foot of the building and the foot of the lamp post.
- Let y = the height of the lamp post.
Use the given information and the tan trigonometric ratio to create equations for the height of the lamp post.
[tex] \\ \underline{ \sf{ \pmb{Tan \: trigonometric \: ratio : }}} \\ [/tex]
[tex] \qquad \qquad \leadsto \: \sf \tan(\theta)=\dfrac{O}{A} \\ [/tex]
[tex] \sf{where:} \\ [/tex]
- [tex] \sf{ \pmb{\theta} \: is \: the \: \pmb{angle}} \\ [/tex]
- [tex] \sf{ \pmb{O} \: is \: the \: \pmb{side \: opposite} \: the \: \pmb{angle}} \\ [/tex]
- [tex] \sf{ \pmb{A } \: is \: the \: \pmb{side \: adjacent} \: of \: the \: \pmb{angle}} \\ [/tex]
[tex] \sf{For \: the \: \pmb{ angle } \: of \: \pmb{elevation \: triangle}:} \\ [/tex]
- [tex] \bold{ \theta = 23°} \\ [/tex]
- [tex] \bold{O = y} \\ [/tex]
- [tex] \bold{A = x} \\ [/tex]
[tex] \large \sf{Therefore:} \\ [/tex]
[tex]\implies \: \sf \tan(23^{\circ})=\dfrac{y}{x} \\ [/tex]
[tex]\implies \: \sf y=x\tan(23^{\circ}) \\ [/tex]
[tex] \sf{For \: the \: \pmb{ angle} \: of \: \pmb{depression \: triangle}:} \\ [/tex]
- [tex] \bold{ \theta = 41°} \\ [/tex]
- [tex] \bold{O = 92 - y} \\ [/tex]
- [tex] \bold{A = x} \\ [/tex]
[tex] \large \sf{Therefore:} \\ [/tex]
[tex]\implies \: \sf \tan(41^{\circ})=\dfrac{92-y}{x} \\ [/tex]
[tex]\implies \: \sf x\tan(41^{\circ})=92-y \\ [/tex]
[tex]\implies \: \sf y=92-x\tan(41^{\circ}) \\ [/tex]
Substitute the equation for the angle of elevation triangle into the equation for depression triangle and solve for x:
[tex]\implies \: \sf x\tan(23^{\circ})=92-x\tan(41^{\circ}) \\ [/tex]
[tex]\implies \: \sf x\tan(23^{\circ})+x\tan(41^{\circ})=92 \\ [/tex]
[tex]\implies \: \sf x[\tan(23^{\circ})+\tan(41^{\circ})]=92 \\ [/tex]
[tex]\implies \: \sf x=\dfrac{92}{\tan(23^{\circ})+\tan(41^{\circ})} \\ [/tex]
[tex]\implies \: \sf x=71.11047605. . . m \\ [/tex]
Therefore, the distance of the lamp post from the foot of the building is 71.1 m (nearest tenth).
To find the height of the lamp post, substitute the found value of x into one of the found equations for y:
[tex]\implies \: \sf y=x\tan(23^{\circ}) \\ [/tex]
[tex]\implies \: \sf y=\left(\dfrac{92 }{\tan(23^{\circ})+\tan(41^{\circ})}\right)\tan(23^{\circ}) \\ [/tex]
[tex]\implies \: \sf y=\dfrac{92 \tan(23^{\circ})}{\tan(23^{\circ})+\tan(41^{\circ})} \\ [/tex]
[tex]\implies \: \sf y=30.18460625. . .m \\\\ [/tex]
Therefore, the height of the lamp post is 30.2 m (nearest tenth).