Answer:
d.) (f/g)(x) = 2x²+x−3
x-1
(x-1)(2x+3)
x-1
= 2x + 3
=
Step-by-step explanation:
f(x) = 2x² + x - 3
g(x) = x - 1
You can solve the following by
substitution,
Given:
3+x-1
4
a.) (f + g) (x) = f(x) + g(x)
= 2x²+x-
2)
3 — (x − 1)
—
=
= 2x² + 2x −
= 2(x² + x −
= 2(x+2)(x-1)
b.) (f - g) (x) = f(x) - g(x)
= 2x²+x-
-3-x+1
1)
3)(x - 1)
= 2x²+x-
4x + 4
c.) (f · g)(x) = f(x) · g(x)
= (2x²+x-
—
= 2x² - 2
= 2(x² - 1)
= 2 ( x + 1) ( x -
= 2x³ – x²
d.) (f/g)(x) = 2x²+x−3
x-1
= (x−1)(2x+3)
= 2x + 33-x+1
1)
3)(x - 1)
= 2x²+x-
4x + 4
c.) (f · g)(x) = f(x) · g(x)
= (2x²+x-
—
= 2x² - 2
= 2(x² - 1)
= 2 ( x + 1) ( x -
= 2x³ – x²