Equation of the Line
Standard form of equation of a line is ax + by + c = 0. Here a, b, are the coefficients. x, y are the variables. c is the constant term. The values of x and y represent the coordinates of the point on the line.
Answers:
- a. y = 5x + 9 ; b. 5x - y + 9 = 0
- a. y = [tex]\frac{6}{-5}[/tex]× - [tex]\frac{2}{5}[/tex] ; b. 6x + 5y + 2 = 0
- a. y = [tex]\frac{3}{4}[/tex]× + 4 ; b. 3x - 4y + 16 = 0
- a. y = 2x + 6 ; b. 2x - y + 6 = 0
- a. y = [tex]\frac{5}{6}[/tex]× - [tex]\frac{7}{6}[/tex] ; b. 5x - 6y - 7 = 0
Solutions:
1. m = 5 point (-1,4)
a. Find the y - intercept.
y = mx + b
4 = (5)(-1) + b
4 = -5 + b
4 + 5 = b
9 = b
Find the equation of the line.
y = mx + b
y = 5x + 9
b. Write the equation in standard form.
y = 5x + 9
-5x + y - 9 = 0
Remove the negative coefficient of x.
-1[-5x + y - 9 = 0]
5x - y + 9 = 0
2. (3, -4)(-2,2)
a. Find the slope.
m = [tex]\frac{y_2 - y_1}{x_2 - x_1}[/tex]
m = [tex]\frac{2 - (-4)}{-2 - 3}[/tex]
m = [tex]\frac{2 + 4}{-5}[/tex]
m = [tex]\frac{6}{-5}[/tex]
Find the y - intercept.
y = mx + b
-4 = [tex]\frac{6}{-5}[/tex](3) + b
-4 = [tex]\frac{18}{-5}[/tex] + b
-4 + [tex]\frac{18}{5}[/tex] = b
[tex]\frac{-20}{5}[/tex] + [tex]\frac{18}{5}[/tex] = b
[tex]\frac{-2}{5}[/tex] = b
Find the equation of the line.
y = mx + b
y = [tex]\frac{6}{-5}[/tex]× - [tex]\frac{2}{5}[/tex]
b. Write the equation in standard form.
y = [tex]\frac{6}{-5}[/tex]× - [tex]\frac{2}{5}[/tex]
[tex]\frac{6}{5}[/tex]× + y + [tex]\frac{2}{5}[/tex] = 0
Remove the denominator.
5[[tex]\frac{6}{5}[/tex]× + y + [tex]\frac{2}{5}[/tex] = 0]
6x + 5y + 2 = 0
3. m = [tex]\frac{3}{4}[/tex] y- intercept = 4
a. Find the equation of the line.
y = mx + b
y = [tex]\frac{3}{4}[/tex]× + 4
b. Write the equation in standard form.
y = [tex]\frac{3}{4}[/tex]× + 4
- [tex]\frac{3}{4}[/tex]× + y - 4 = 0
Remove the denominator.
4[- [tex]\frac{3}{4}[/tex]× + y - 4 = 0]
-3x + 4y - 16 = 0
Remove the negative coefficient of x.
-1[-3x + 4y - 16 = 0]
3x - 4y + 16 = 0
4. x - intercept = -3 ; y - intercept = 6
(-3, 0)(0,6)
Find the slope.
m = [tex]\frac{y_2 - y_1}{x_2 - x_1}[/tex]
m = [tex]\frac{6 - 0}{0 - (-3)}[/tex]
m = [tex]\frac{6}{3}[/tex]
m = 2
Find the equation of the line.
y = mx + b
y = 2x + 6
b. Write the equation in standard form.
y = 2x + 6
-2x + y - 6 = 0
Remove the negative coefficient of x.
-1[-2x + y - 6 = 0]
2x - y + 6 = 0
5. (-1,-2)(5,3)
Find the slope.
m = [tex]\frac{y_2 - y_1}{x_2 - x_1}[/tex]
m = [tex]\frac{3 - (-2)}{5 - (-1)}[/tex]
m = [tex]\frac{3 + 2}{5 + 1}[/tex]
m = [tex]\frac{5}{6}[/tex]
Find the y - intercept.
y = mx + b
y = [tex]\frac{5}{6}[/tex]× + b
-2 = [tex]\frac{5}{6}[/tex](-1) + b
-2 = - [tex]\frac{5}{6}[/tex] + b
-2 + [tex]\frac{5}{6}[/tex] = b
- [tex]\frac{12}{6}[/tex] + [tex]\frac{5}{6}[/tex] = b
- [tex]\frac{7}{6}[/tex] = b
Find the equation of the line.
y = mx + b
y = [tex]\frac{5}{6}[/tex]× - [tex]\frac{7}{6}[/tex]
b. Write the equation in standard form.
y = [tex]\frac{5}{6}[/tex]× - [tex]\frac{7}{6}[/tex]
- [tex]\frac{5}{6}[/tex]× + y + [tex]\frac{7}{6}[/tex] = 0
Remove the denominator.
6[- [tex]\frac{5}{6}[/tex]× + y + [tex]\frac{7}{6}[/tex] = 0]
-5x + 6y + 7 = 0
Remove the negative coefficient of x.
-1[-5x + 6y + 7 = 0]
5x - 6y - 7 = 0
How to find the equation of the line: https://brainly.ph/question/6736797
#BrainlyEveryday